3.231 \(\int \frac {\cos ^{\frac {5}{2}}(c+d x)}{\sqrt {1+\cos (c+d x)}} \, dx\)

Optimal. Leaf size=126 \[ \frac {\sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{2 d \sqrt {\cos (c+d x)+1}}-\frac {\sqrt {2} \sin ^{-1}\left (\frac {\sin (c+d x)}{\cos (c+d x)+1}\right )}{d}+\frac {7 \sin ^{-1}\left (\frac {\sin (c+d x)}{\sqrt {\cos (c+d x)+1}}\right )}{4 d}-\frac {\sin (c+d x) \sqrt {\cos (c+d x)}}{4 d \sqrt {\cos (c+d x)+1}} \]

[Out]

7/4*arcsin(sin(d*x+c)/(1+cos(d*x+c))^(1/2))/d-arcsin(sin(d*x+c)/(1+cos(d*x+c)))*2^(1/2)/d+1/2*cos(d*x+c)^(3/2)
*sin(d*x+c)/d/(1+cos(d*x+c))^(1/2)-1/4*sin(d*x+c)*cos(d*x+c)^(1/2)/d/(1+cos(d*x+c))^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.27, antiderivative size = 126, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 6, integrand size = 23, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.261, Rules used = {2778, 2983, 2982, 2781, 216, 2774} \[ \frac {\sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{2 d \sqrt {\cos (c+d x)+1}}-\frac {\sqrt {2} \sin ^{-1}\left (\frac {\sin (c+d x)}{\cos (c+d x)+1}\right )}{d}+\frac {7 \sin ^{-1}\left (\frac {\sin (c+d x)}{\sqrt {\cos (c+d x)+1}}\right )}{4 d}-\frac {\sin (c+d x) \sqrt {\cos (c+d x)}}{4 d \sqrt {\cos (c+d x)+1}} \]

Antiderivative was successfully verified.

[In]

Int[Cos[c + d*x]^(5/2)/Sqrt[1 + Cos[c + d*x]],x]

[Out]

-((Sqrt[2]*ArcSin[Sin[c + d*x]/(1 + Cos[c + d*x])])/d) + (7*ArcSin[Sin[c + d*x]/Sqrt[1 + Cos[c + d*x]]])/(4*d)
 - (Sqrt[Cos[c + d*x]]*Sin[c + d*x])/(4*d*Sqrt[1 + Cos[c + d*x]]) + (Cos[c + d*x]^(3/2)*Sin[c + d*x])/(2*d*Sqr
t[1 + Cos[c + d*x]])

Rule 216

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSin[(Rt[-b, 2]*x)/Sqrt[a]]/Rt[-b, 2], x] /; FreeQ[{a, b}
, x] && GtQ[a, 0] && NegQ[b]

Rule 2774

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]/Sqrt[(d_.)*sin[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[-2/f, Su
bst[Int[1/Sqrt[1 - x^2/a], x], x, (b*Cos[e + f*x])/Sqrt[a + b*Sin[e + f*x]]], x] /; FreeQ[{a, b, d, e, f}, x]
&& EqQ[a^2 - b^2, 0] && EqQ[d, a/b]

Rule 2778

Int[((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)/Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]], x_Symbol] :> Simp
[(-2*d*Cos[e + f*x]*(c + d*Sin[e + f*x])^(n - 1))/(f*(2*n - 1)*Sqrt[a + b*Sin[e + f*x]]), x] - Dist[1/(b*(2*n
- 1)), Int[((c + d*Sin[e + f*x])^(n - 2)*Simp[a*c*d - b*(2*d^2*(n - 1) + c^2*(2*n - 1)) + d*(a*d - b*c*(4*n -
3))*Sin[e + f*x], x])/Sqrt[a + b*Sin[e + f*x]], x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] &&
 EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[n, 1] && IntegerQ[2*n]

Rule 2781

Int[1/(Sqrt[(d_.)*sin[(e_.) + (f_.)*(x_)]]*Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> -Dist[Sqr
t[2]/(Sqrt[a]*f), Subst[Int[1/Sqrt[1 - x^2], x], x, (b*Cos[e + f*x])/(a + b*Sin[e + f*x])], x] /; FreeQ[{a, b,
 d, e, f}, x] && EqQ[a^2 - b^2, 0] && EqQ[d, a/b] && GtQ[a, 0]

Rule 2982

Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])/(Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*Sqrt[(c_.) + (d_.)*sin
[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Dist[(A*b - a*B)/b, Int[1/(Sqrt[a + b*Sin[e + f*x]]*Sqrt[c + d*Sin[e + f*
x]]), x], x] + Dist[B/b, Int[Sqrt[a + b*Sin[e + f*x]]/Sqrt[c + d*Sin[e + f*x]], x], x] /; FreeQ[{a, b, c, d, e
, f, A, B}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]

Rule 2983

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> -Simp[(B*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*(c + d*Sin[e + f*x])^n)/(f*(
m + n + 1)), x] + Dist[1/(b*(m + n + 1)), Int[(a + b*Sin[e + f*x])^m*(c + d*Sin[e + f*x])^(n - 1)*Simp[A*b*c*(
m + n + 1) + B*(a*c*m + b*d*n) + (A*b*d*(m + n + 1) + B*(a*d*m + b*c*n))*Sin[e + f*x], x], x], x] /; FreeQ[{a,
 b, c, d, e, f, A, B, m}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[n, 0] && (I
ntegerQ[n] || EqQ[m + 1/2, 0])

Rubi steps

\begin {align*} \int \frac {\cos ^{\frac {5}{2}}(c+d x)}{\sqrt {1+\cos (c+d x)}} \, dx &=\frac {\cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{2 d \sqrt {1+\cos (c+d x)}}-\frac {1}{4} \int \frac {(-3+\cos (c+d x)) \sqrt {\cos (c+d x)}}{\sqrt {1+\cos (c+d x)}} \, dx\\ &=-\frac {\sqrt {\cos (c+d x)} \sin (c+d x)}{4 d \sqrt {1+\cos (c+d x)}}+\frac {\cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{2 d \sqrt {1+\cos (c+d x)}}-\frac {1}{4} \int \frac {\frac {1}{2}-\frac {7}{2} \cos (c+d x)}{\sqrt {\cos (c+d x)} \sqrt {1+\cos (c+d x)}} \, dx\\ &=-\frac {\sqrt {\cos (c+d x)} \sin (c+d x)}{4 d \sqrt {1+\cos (c+d x)}}+\frac {\cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{2 d \sqrt {1+\cos (c+d x)}}+\frac {7}{8} \int \frac {\sqrt {1+\cos (c+d x)}}{\sqrt {\cos (c+d x)}} \, dx-\int \frac {1}{\sqrt {\cos (c+d x)} \sqrt {1+\cos (c+d x)}} \, dx\\ &=-\frac {\sqrt {\cos (c+d x)} \sin (c+d x)}{4 d \sqrt {1+\cos (c+d x)}}+\frac {\cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{2 d \sqrt {1+\cos (c+d x)}}-\frac {7 \operatorname {Subst}\left (\int \frac {1}{\sqrt {1-x^2}} \, dx,x,-\frac {\sin (c+d x)}{\sqrt {1+\cos (c+d x)}}\right )}{4 d}+\frac {\sqrt {2} \operatorname {Subst}\left (\int \frac {1}{\sqrt {1-x^2}} \, dx,x,-\frac {\sin (c+d x)}{1+\cos (c+d x)}\right )}{d}\\ &=-\frac {\sqrt {2} \sin ^{-1}\left (\frac {\sin (c+d x)}{1+\cos (c+d x)}\right )}{d}+\frac {7 \sin ^{-1}\left (\frac {\sin (c+d x)}{\sqrt {1+\cos (c+d x)}}\right )}{4 d}-\frac {\sqrt {\cos (c+d x)} \sin (c+d x)}{4 d \sqrt {1+\cos (c+d x)}}+\frac {\cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{2 d \sqrt {1+\cos (c+d x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 0.90, size = 286, normalized size = 2.27 \[ \frac {\cos \left (\frac {1}{2} (c+d x)\right ) \sqrt {\frac {\cos (c+d x)}{\cos (c+d x)+1}} \left (-4 \sqrt {1+e^{2 i (c+d x)}} \sin \left (\frac {1}{2} (c+d x)\right )+2 \sqrt {1+e^{2 i (c+d x)}} \sin \left (\frac {3}{2} (c+d x)\right )-7 \sin \left (\frac {1}{2} (c+d x)\right ) \tanh ^{-1}\left (\sqrt {1+e^{2 i (c+d x)}}\right )+7 i \cos \left (\frac {1}{2} (c+d x)\right ) \tanh ^{-1}\left (\sqrt {1+e^{2 i (c+d x)}}\right )+7 \sinh ^{-1}\left (e^{i (c+d x)}\right ) \left (\sin \left (\frac {1}{2} (c+d x)\right )-i \cos \left (\frac {1}{2} (c+d x)\right )\right )+8 \sqrt {2} \tanh ^{-1}\left (\frac {1-e^{i (c+d x)}}{\sqrt {2} \sqrt {1+e^{2 i (c+d x)}}}\right ) \left (\sin \left (\frac {1}{2} (c+d x)\right )-i \cos \left (\frac {1}{2} (c+d x)\right )\right )\right )}{4 d \sqrt {1+e^{2 i (c+d x)}}} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[Cos[c + d*x]^(5/2)/Sqrt[1 + Cos[c + d*x]],x]

[Out]

(Cos[(c + d*x)/2]*Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x])]*((7*I)*ArcTanh[Sqrt[1 + E^((2*I)*(c + d*x))]]*Cos[(c +
 d*x)/2] - 4*Sqrt[1 + E^((2*I)*(c + d*x))]*Sin[(c + d*x)/2] - 7*ArcTanh[Sqrt[1 + E^((2*I)*(c + d*x))]]*Sin[(c
+ d*x)/2] + 7*ArcSinh[E^(I*(c + d*x))]*((-I)*Cos[(c + d*x)/2] + Sin[(c + d*x)/2]) + 8*Sqrt[2]*ArcTanh[(1 - E^(
I*(c + d*x)))/(Sqrt[2]*Sqrt[1 + E^((2*I)*(c + d*x))])]*((-I)*Cos[(c + d*x)/2] + Sin[(c + d*x)/2]) + 2*Sqrt[1 +
 E^((2*I)*(c + d*x))]*Sin[(3*(c + d*x))/2]))/(4*d*Sqrt[1 + E^((2*I)*(c + d*x))])

________________________________________________________________________________________

fricas [A]  time = 1.99, size = 135, normalized size = 1.07 \[ \frac {{\left (2 \, \cos \left (d x + c\right ) - 1\right )} \sqrt {\cos \left (d x + c\right ) + 1} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right ) + 4 \, {\left (\sqrt {2} \cos \left (d x + c\right ) + \sqrt {2}\right )} \arctan \left (\frac {\sqrt {2} \sqrt {\cos \left (d x + c\right ) + 1} \sqrt {\cos \left (d x + c\right )}}{\sin \left (d x + c\right )}\right ) - 7 \, {\left (\cos \left (d x + c\right ) + 1\right )} \arctan \left (\frac {\sqrt {\cos \left (d x + c\right ) + 1} \sqrt {\cos \left (d x + c\right )}}{\sin \left (d x + c\right )}\right )}{4 \, {\left (d \cos \left (d x + c\right ) + d\right )}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^(5/2)/(1+cos(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

1/4*((2*cos(d*x + c) - 1)*sqrt(cos(d*x + c) + 1)*sqrt(cos(d*x + c))*sin(d*x + c) + 4*(sqrt(2)*cos(d*x + c) + s
qrt(2))*arctan(sqrt(2)*sqrt(cos(d*x + c) + 1)*sqrt(cos(d*x + c))/sin(d*x + c)) - 7*(cos(d*x + c) + 1)*arctan(s
qrt(cos(d*x + c) + 1)*sqrt(cos(d*x + c))/sin(d*x + c)))/(d*cos(d*x + c) + d)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\cos \left (d x + c\right )^{\frac {5}{2}}}{\sqrt {\cos \left (d x + c\right ) + 1}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^(5/2)/(1+cos(d*x+c))^(1/2),x, algorithm="giac")

[Out]

integrate(cos(d*x + c)^(5/2)/sqrt(cos(d*x + c) + 1), x)

________________________________________________________________________________________

maple [A]  time = 0.16, size = 187, normalized size = 1.48 \[ -\frac {\sqrt {2+2 \cos \left (d x +c \right )}\, \left (\cos ^{\frac {5}{2}}\left (d x +c \right )\right ) \left (-1+\cos \left (d x +c \right )\right )^{3} \left (2 \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \cos \left (d x +c \right ) \sin \left (d x +c \right )+4 \sqrt {2}\, \arcsin \left (\frac {-1+\cos \left (d x +c \right )}{\sin \left (d x +c \right )}\right )-\sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sin \left (d x +c \right )+7 \arctan \left (\frac {\sin \left (d x +c \right ) \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}}{\cos \left (d x +c \right )}\right )\right ) \sqrt {2}}{8 d \left (\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}\right )^{\frac {5}{2}} \sin \left (d x +c \right )^{6}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(d*x+c)^(5/2)/(1+cos(d*x+c))^(1/2),x)

[Out]

-1/8/d*(2+2*cos(d*x+c))^(1/2)*cos(d*x+c)^(5/2)*(-1+cos(d*x+c))^3*(2*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*cos(d*x+
c)*sin(d*x+c)+4*2^(1/2)*arcsin((-1+cos(d*x+c))/sin(d*x+c))-(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*sin(d*x+c)+7*arct
an(sin(d*x+c)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)/cos(d*x+c)))/(cos(d*x+c)/(1+cos(d*x+c)))^(5/2)/sin(d*x+c)^6*2^
(1/2)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\cos \left (d x + c\right )^{\frac {5}{2}}}{\sqrt {\cos \left (d x + c\right ) + 1}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^(5/2)/(1+cos(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

integrate(cos(d*x + c)^(5/2)/sqrt(cos(d*x + c) + 1), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {{\cos \left (c+d\,x\right )}^{5/2}}{\sqrt {\cos \left (c+d\,x\right )+1}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(c + d*x)^(5/2)/(cos(c + d*x) + 1)^(1/2),x)

[Out]

int(cos(c + d*x)^(5/2)/(cos(c + d*x) + 1)^(1/2), x)

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)**(5/2)/(1+cos(d*x+c))**(1/2),x)

[Out]

Timed out

________________________________________________________________________________________